ORGANIC LETTERS

2009 Vol. 11, No. 1 197–199

First Total Synthesis of Hinckdentine A

Kazuhiro Higuchi, Yukihiro Sato, Mei Tsuchimochi, Kenta Sugiura, Masatoshi Hatori, and Tomomi Kawasaki*

Meiji Pharmaceutical University, 2-522-1 Noshio Kiyose, Tokyo 204-8588, Japan kawasaki@my-pharm.ac.jp

Received October 16, 2008

ABSTRACT

We have accomplished the first total synthesis of (\pm) -hinckdentine A (1). The key steps are m-CPBA oxidation of 2-arylindole followed by acid-mediated Mannich-type C-C bond formation of 2-hydroxyindolin-3-one, seven-membered ring closure, and regioselective tribromination.

Hinckdentine A (1) was isolated from the bryozoans *Hincksi-noflustra denticulata* living in the eastern coast of Tasmania. Its structure and absolute configuration were determined by single-crystal X-ray analysis. Hinckdentine A (1) has a unique architecture containing a seven-membered lactam ring fused to the tribromoindolo[1,2-c]quinazoline with a quaternary carbon center.

Br NH Br Hinckdentine A (1)

Figure 1. Structure of Hinckdentine A.

The framework of 1 consists of biologically important dihydrotryptamine and dihydropyrimidine units together with a cataleptically active indolo[1,2-c]quinazoline core,² although the biological activity of 1 has not yet appeared in the literature. Structural and biological interests have attracted several organic chemists to attempt the synthesis of 1.³ Although several synthetic applications were reported, the total synthesis of 1 has not yet been realized. Recently, McWhorter has achieved the synthesis of the 8-desbromo

derivative of hinckdentine A (1).⁴ Here, we report the first total synthesis of (\pm) -hinckdentine A (1).

Our synthetic plan for **1** is shown in Scheme 1. Bromination of the indolo[1,2-c]quinazoline core holding the *N*-bulky substituent in **2** was expected to provide the desired tribromide, thus enabling the total synthesis of **1**. Furthermore, we envisioned that the hexahydroazepino[4',5':2,3]indolo[1,2-c]tetrahydroquinazoline skeleton in **2**, the central part of this alkaloid, would be constructed by the cyclization of aminonitrile **3**, derived by pyrimidine-ring formation of 2,2-disubstituted indolin-3-one **4** followed by olefination. We anticipated that the quaternary carbon center in **4** would be formed from indole **6** via novel oxidation and following Mannich-type addition of a carbon-nucleophile to the α -ketoiminium intermediate generated from **5**.

⁽¹⁾ Blackman, A. J.; Hambley, T. W.; Picker, K.; Taylor, W. C.; Thirasasana, N. Tetrahedron Lett. 1987, 28, 5561–5562.

⁽²⁾ Grinev, A. N.; Kurilo, G. N.; Cherkasova, A. A.; Mashkovskii, M. D.; Andreeva, N. I.; Sokolov, I. K. *Khim.-Farm. Zh.* **1978**, *12*, 97–101.

^{(3) (}a) Billimoria, A. D.; Cava, M. P. J. Org. Chem. 1994, 59, 6777–6782. (b) Barnwell, N.; Beddoes, R. L.; Mitchell, M. B.; Joule, J. A. Heterocycles 1994, 37, 175–179. (c) Domon, L.; Coeur, C. L.; Grelard, A.; Thiéry, V.; Besson, T. Tetrahedron Lett. 2001, 42, 6671–6674. (d) Koradin, C.; Dohle, W.; Rodriguez, A. L.; Schmid, B.; Knochel, P. Tetrahedron 2003, 59, 1571–1578. (e) Mendiola, J.; Castellote, I.; Alvarez-Builla, J.; Fernández-Gadea, J.; Gómez, A.; Vaquero, J. J. J. Org. Chem. 2006, 71, 1254–1257. (f) Helliwell, M.; Corden, S.; Joule, J. A. Acta Crystallogr. 2007, E63, o1993–o1995.

⁽⁴⁾ Liu, Y.; McWhorter, W. W. J. Am. Chem. Soc. 2003, 125, 4240–4252.

Scheme 1. Retrosynthetic Analysis for Hinckdentine A (1)

Several preparative methods for 2,2-disubstituted indolin-3-ones are well-known, for example, rearrangement of 2,3-dihydroxyindolines,⁵ rearrangement of 2,3-disubstituted indolin-3-ols,⁶ alkylation of 2-arylindolin-3-ones,⁷ oxidative rearrangement of 2,3-disubstituted indoles,⁸ cyclization of *o*-azidophenyl alkylketones,⁹ and so on.¹⁰ Recently, Kobayashi's group has disclosed the acid-mediated substitution of 2-alcohoxyindolin-3-one with aromatic, organosilicon, and organoboron compounds as carbon-nucleophiles.¹¹ This is a fascinating methodology as a direct preparative tool of 2,2-disubstituted indolin-3-one.

At the beginning of the synthesis of 1, we studied the Mannich-type reaction of 2-hydroxyindolin-3-one 8 with several carbon-nucleophiles via an indoleninium intermediate. Initially, preparation of 8 was carried out by PMB protection of 2-(2-nitirophenyl)indole 7^{12} and m-CPBA oxidation in 85% yield (Scheme 2).

Scheme 2. Oxidation of 2-Arylindole

We explored the reaction of 2-hydroxyindolin-3-one **8** with various carbon-nucleophiles under acidic conditions (Table 1). When **8** was treated with allyltrimethylsilane and TiCl₄ in CH₂Cl₂ at 0 °C, the desired reaction proceeded successfully

to afford 2-aryl-2-allylindolin-3-one **10a** in 98% yield (entry 1). In addition, a modified Petasis—boronic acid—Mannich reaction¹³ with allylboronic ester gave **10a** in 98% yield (entry 2). Alkylation with silylketenacetal and silylenolates also furnished carbonyl compounds **10b**, **10c**, and **10d**, respectively (entries 3–5). The addition of *N*-methyl indole also worked efficiently with camphorsulfonic acid to provide **10e** in 98% yield (entry 6).

Table 1. Mannich-Type Reaction of 8

entry	Nu	acid	R	yield (%)
1	TMS	TiCl ₄	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10a 98
2	0 B.0	TiCl ₄	Z~//	10a 98
3	OTMS	TiCl ₄	;s ^s OMe	10b 93
4	OTMS Ph	TiCl ₄	·śś Ph	10c 98
5	отмѕ	TiCl ₄	O اا د.	10d 37
6	∕н	CSA	₹ <u></u>	10d 56 ^a
7		CSA	j's N	10e 98
	Me		Me	

a 8 was recovered in 41% yield

With 2,2-disubstituted indolin-3-one **10d** in hand, we then constructed the pyrimidine ring and introduced the side chain at the **3** position of **10d** to convert into **15** (Scheme 3).

198 Org. Lett., Vol. 11, No. 1, 2009

^{(5) (}a) Witkop, B. J. Am. Chem. Soc. **1950**, 72, 614–620. (b) Patrick, J. B.; Witkop, B. J. Am. Chem. Soc. **1950**, 72, 633–634.

⁽⁶⁾ Lednicer, D. L.; Emmert, D. E. J. Heterocycl. Chem. 1970, 6, 575-581

^{(7) (}a) Berti, C.; Greci, L.; Marchetti, L. J. Chem. Soc., Perkin Trans.
2 1979, 233–236. (b) Adam, J.-M.; Winkler, T. Helv. Chim. Acta 1984,
67, 2186–2191. (c) Tommasi, G.; Bruni, P.; Greci, L.; Sgarabotto, P.; Righi,
L. J. Chem. Soc., Perkin Trans. 1 1999, 681–686. (d) Liu, Y.; McWhorter,
W. W. J. Org. Chem. 2003, 68, 2618–2622.

⁽⁸⁾ Zhang, X.; Foote, C. S. J. Am. Chem. Soc. 1993, 115, 8867–8868.

⁽⁹⁾ Ardakani, M. A.; Smalley, R. K. Tetrahedron Lett. 1979, 20, 4769–4772.

Initially, NaBH₄ reduction of aldehyde **10c** followed by TBS protection of alcohol provided **11** (89%). After the removal of the PMB group with DDQ, the nitro group was reduced with zinc in AcOH–CH₂Cl₂ to afford aniline **12** in 67% two-step yield. The formation of the dihydropyrimidine ring within **13** was achieved by the treatment of **12** with trimethylorthoformate in the presence of PPTS in 86% yield. Horner–Wadsworth–Emmons olefination of **13** with phosphonate **14** in the presence of NaH followed by magnesium reduction of olefin and imine moieties gave **15** in 77% yield. The stereochemistry of **15** was confirmed by NOE experiments. ¹⁵

We performed transformation of **15** to hinckdentine A (**1**) through lactamization to build the core of **1** and regioselective tribromination by the following procedure (Scheme 4). The secondary amino group in **15** was protected by a Boc group, and then the silylether was deprotected by HF•pyridine to furnish alcohol **16**. The conversion of **16** to mesylate followed by substitution with NaN₃ provided azide **17** in 86% yield. The reduction of azide **17** using the Staudinger protocol and the subsequent ruthenium-catalyzed lactamization of

aminonitrile¹⁶ afforded lactam **18** in 66% yield. Finally, bromination on both aromatic rings of **18** was accomplished by treatment with NBS to produce the desired tribromide. Because of the bulkiness of Boc group on the quinazoline nitrogen, a fourth bromination did not take place. Deprotection of the *N*-Boc group followed by TPAP oxidation of tetrahydropyrimidine gave hinckdentine A (**1**). The spectroscopic data of synthetic **1** were consistent with those of the natural product.¹

Scheme 4. Total Synthesis of Hinckdentine A (1) 1. Boc₂O, Et₃N DMAP, MeCN 2. HF·pyr, THF 78% syn-15 16 1. MsCl, Et₃N DMAP, CH2Cl2 1. PPh₃, H₂O-THF 2. RuH₂(PPh)₄ 2. NaN3, DMF H₂O, DME 86% 66% 17 ^{Boc} 1. NBS, THF 2. TFA, CH₂Cl₂ 3. TPAP, NMO MeCN 47% Hinckdentine A (1) 18

In conclusion, we have accomplished the first total synthesis of (±)-hinckdentine A (1). As a key step for the construction of a quaternary carbon center, Mannich-type C-C bond formation to 2-hydroxyindolin-3-one under acidic conditions was successfully achieved. Further application of this methodology to the synthesis of other alkaloids and the enantioselective preparation of 2,2-disubstituted indolin-3-one are now under investigation in our laboratory.

Acknowledgment. We thank N. Eguchi, T. Koseki, and S. Kubota of the Analytical Center of our University for microanalysis, NMR, and mass spectral measurements.

Supporting Information Available: Experimental procedures and spectroscopic data for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL802394N

Org. Lett., Vol. 11, No. 1, 2009

^{(10) (}a) Kawasaki, T.; Ohtsuka, H.; Chien, C.-S.; Omata, M.; Sakamoto, M. *Chem. Pharm. Bull.* **1987**, *35*, 1339–1346. (b) Yamada, K.; Kurokawa, T.; Tokuyama, H.; Fukuyama, T. *J. Am. Chem. Soc.* **2003**, *125*, 6630–6331. (c) Higuchi, K.; Masuda, K.; Koseki, T.; Hatori, M.; Sakamoto, M.; Kawasaki, T. *Heterocycles* **2007**, *73*, 641–650.

⁽¹¹⁾ Buller, M. J.; Cook, T. G.; Kobayashi, Y. Heterocycles 2007, 72, 163–166.

⁽¹²⁾ Indole 7 was prepared from 2-nitroacetophenone and phenylhydrazine in 46% two-step yield. MacPhillamy, H. B.; Dziemian, R. L.; Lucas, R. A.; Kuehne, M. E. J. Am. Chem. Soc. 1958, 80, 2172–2178.

⁽¹³⁾ Batey, R. A.; MacKay, D. B.; Santhakumar, V. J. Am. Chem. Soc. 1999, 121, 5075–5076.

⁽¹⁴⁾ Shinada, T.; Ikebe, E.; Oe, K.; Namba, K.; Kawasaki, M.; Ohfune, Y. Org. Lett. 2007, 9, 1765–1767.

⁽¹⁵⁾ See Supporting Information.

⁽¹⁶⁾ Murahashi, S.-I.; Naota, T.; Saito, E. J. Am. Chem. Soc. 1986, 108, 7846–7847.